119 research outputs found

    The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism

    Get PDF
    Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism

    An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins

    Get PDF
    We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins

    Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity.

    Get PDF
    Protein aggregation into amyloid fibrils and protofibrillar aggregates is associated with a number of the most common neurodegenerative diseases. We have established, using a computational approach, that knowledge of the primary sequences of proteins is sufficient to predict their in vitro aggregation propensities. Here we demonstrate, using rational mutagenesis of the Abeta42 peptide based on such computational predictions of aggregation propensity, the existence of a strong correlation between the propensity of Abeta42 to form protofibrils and its effect on neuronal dysfunction and degeneration in a Drosophila model of Alzheimer disease. Our findings provide a quantitative description of the molecular basis for the pathogenicity of Abeta and link directly and systematically the intrinsic properties of biomolecules, predicted in silico and confirmed in vitro, to pathogenic events taking place in a living organism

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Cooperativity among Short Amyloid Stretches in Long Amyloidogenic Sequences

    Get PDF
    Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection method discovered that windows consisting of long amino acid segments of ∼30 residues, instead of the commonly used short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27 residue window revealed three cooperative regions of short stretch, resemble the β-strand-turn-β-strand motif in A-βpeptide amyloid and β-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the interaction energy between two short stretches in long segment is computed and incorporated as an additional feature. The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby residues

    Machine learning methods applied to genotyping data capture interactions between single nucleotide variants in late onset Alzheimer's disease

    Get PDF
    Introduction Genome-wide association studies (GWAS) in late onset Alzheimer's disease (LOAD) provide lists of individual genetic determinants. However, GWAS do not capture the synergistic effects among multiple genetic variants and lack good specificity. Methods We applied tree-based machine learning algorithms (MLs) to discriminate LOAD (>700 individuals) and age-matched unaffected subjects in UK Biobank with single nucleotide variants (SNVs) from Alzheimer's disease (AD) studies, obtaining specific genomic profiles with the prioritized SNVs. Results MLs prioritized a set of SNVs located in genes PVRL2, TOMM40, APOE, and APOC1, also influencing gene expression and splicing. The genomic profiles in this region showed interaction patterns involving rs405509 and rs1160985, also present in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. rs405509 located in APOE promoter interacts with rs429358 among others, seemingly neutralizing their predisposing effect. Discussion Our approach efficiently discriminates LOAD from controls, capturing genomic profiles defined by interactions among SNVs in a hot-spot region

    The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection

    Get PDF
    BACKGROUND: The role of Diabetes mellitus (DM) in the etiology and in the antimicrobial resistance of uropathogens in patients with urinary tract infection has not been well clarified. For this reason we have evaluated the spectrum of uropathogens and the profile of antibiotic resistance in both diabetic and non diabetic patients with asymptomatic urinary tract infection (UTI). METHODS: Urinary isolates and their patterns of susceptibility to the antimicrobials were evaluated in 346 diabetics (229 females and 117 males) and 975 non diabetics (679 females and 296 males) who were screened for significant bacteriuria (≥10(5 )CFU/mL urine). The mean age of diabetic and non diabetic patients was respectively 73.7 yrs ± 15 S.D. and 72.7 ± 24 (p = NS). RESULTS: Most of our patients had asymptomatic UTI. The most frequent causative organisms of bacteriuria in females with and without DM were respectively : E. coli 54.1% vs 58.2% (p = NS), Enterococcus spp 8.3% vs 6.5% (p = NS), Pseudomonas spp 3.9 vs 4.7% (p = NS). The most frequent organisms in diabetic and non diabetic males were respectively E. coli 32.5% vs 31.4% (p = NS), Enterococcus spp 9.4% vs 14.5% (p = NS), Pseudomonas spp 8.5% vs 17.2% (p = <0.02). A similar isolation rate of E. coli, Enterococcus spp and Pseudomonas spp was also observed in patients with indwelling bladder catheter with and without DM. No significant differences in resistance rates to ampicillin, nitrofurantoin, cotrimoxazole and ciprofloxacin of E. coli and Enteroccus spp were observed between diabetic and non diabetic patients. CONCLUSION: In our series of patients with asymptomatic UTI (mostly hospital acquired), diabetes mellitus per se does not seem to influence the isolation rate of different uropathogens and their susceptibility patterns to antimicrobials
    • …
    corecore